G* =  = OPERADOR QUÂNTICO DE GRACELI.


    EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


 { -1 / G* =   / T] /  c} =

G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =



A ideia de entropia, uma grandeza física que encontra sua definição dentro da área da termodinâmica,[Nota 4] surgiu no seguimento de uma função criada por Clausius[4] a partir de um processo cíclico reversível. Sendo Q o calor trocado entre o sistema e sua vizinhança, e T a temperatura absoluta do sistema, em todo processo reversível a integral de curva de  só depende dos estados inicial e final, sendo independente do caminho seguido. Portanto deve existir uma função de estado do sistema, S = f (P, V, T), chamada de entropia, cuja variação em um processo reversível entre os estados inicial e final é:[Nota 5]


 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/


, sendo Q reversível

A entropia física, em sua forma clássica é dada por:


 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/


, desde que o calor seja trocado de forma reversível

ou, quando o processo é isotérmico:


 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


onde S é a entropia,  a quantidade de calor trocado e T a temperatura em Kelvin.

O significado desta equação pode ser descrito, em linguagem corrente, da seguinte forma:

Em processos reversíveis como o descrito, quando um sistema termodinâmico passa do estado 1 ao estado 2, a variação em sua entropia é igual à variação da quantidade de calor trocada (de forma reversível) dividido pela temperatura.


 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/



Definição de Entalpia






A versão de transferência de calor da lei de Newton, indica que a taxa de perda de calor de um corpo é proporcional à diferença de temperaturas entre o corpo e o meio onde se encontra.

A taxa de transferência de calor em tais circunstâncias é expressa pela derivada abaixo.

Lei de resfriamento de Newton na condução é uma reafirmação da equação diferencial dada pela lei de Fourier:


 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/


onde

 é a energia térmica em joules
 é o tempo
 é o coeficiente de transferência de calor, a força motriz para este processo vem da diferença de densidade do fluído, que quando em contato com uma superfície de diferente temperatura resulta em um aumento na força de flutuação. Um exemplo em nosso dia-a-dia pode ser a transferência de calor entre a parede e o telhado de uma casa em um dia calmo ou até mesmo na superfície de um painel solar quando não há vento (assumindo ser independente de T)(W/m2 K)
 é a área de transferência de calor (m2)
 é a temperatura da superfície do objecto e interior (uma vez que estes são os mesmos nesta aproximação)
 é a temperatura do meio ambiente; ou seja, a temperatura adequadamente longe da superfície

 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/


 o gradiente térmico entre o ambiente e o objeto, é dependente do tempo.[1][





Equação genérica: materiais isotrópicos[editar | editar código-fonte]

Nos materiais isotrópicos pode-se calcular a variação de comprimento, e consequentemente de área e volume, em função da variação de temperatura:

 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

  • variação do comprimento;
  • coeficiente de dilatação linear;
  • comprimento inicial;
  • variação de temperatura.

/



Na dilatação volumétrica calcula-se a variação do volume, logo, avaliamos três dimensões. A dilatação de um líquido ou de um gás é volumétrica. O coeficiente de dilatação volumétrica () é dado da seguinte forma: Coeficiente de dilatação linear multiplicado por três, tal procedimento é explicado pelo fato de que quando calculamos um volume levamos em conta as três dimensões (altura, largura e comprimento).

 G=  =     /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 

  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    /


  • /

  •  é a variação do volume do corpo que sofreu a dilatação linear em metros cúbicos ();
  •  é o coeficiente de dilatação volumétrico do material que constitui o corpo em grau Celsius recíproco (). É importante salientar que ;
  •  é o volume inicial da superfície do corpo em metros cúbicos ();
  •  é a variação de temperatura sofrida pelo corpo em grau Celsius ().


, onde:


Comentários